Peptidyl-glycine alpha-amidating monooxygenase targeting and shaping of atrial secretory vesicles: inhibition by mutated N-terminal ProANP and PBA.
نویسندگان
چکیده
ANP (atrial natriuretic peptide) is widely recognized as an important vasorelaxant, diuretic, and cardioprotective hormone. Little is known, however, about how ANP-secretory vesicles form within the atrial myocytes. Secretory vesicles were visualized by fluorescence microscope imaging in live rat atrial myocytes expressing proANP-enhanced green fluorescent protein (EGFP), or N-terminal-mutated fusion proteins thought to suppress the calcium-dependent aggregation of proANP. Results showed the following: (1) aggregates of proANP and coexpressed proANP-EGFP recruited peptidylglycine alpha-amidating monooxygenase (PAM)-1, an abundant atrial integral vesicle membrane protein; (2) coexpressed N-terminal-mutated (Glu23,24-->Gln23,24) and N-terminal-deleted proANP-EGFP inhibited recruitment of PAM-1 by up to 60%; (3) 4-phenyl-3-butenoic acid (PBA) (10 mumol/L), a pharmacological inhibitor of the lumenal peptidylglycine alpha-hydroxylating monooxygenase domain of PAM proteins, inhibited recruitment of endogenous PAM-1 and of coexpressed pro-EGFP-PAM-1; (4) PBA had no effect on exocytosis of the potassium inward rectifier KIR2.1; (5) PBA induced a deformation of the secretory vesicles but did not inhibit docking. These findings suggest that recruitment of PAM-1 to secretory vesicles depends on intact N-terminal proANP and on the lumenal domain of PAM-1. Conversely, PAM-1 participates in shaping the proANP-secretory vesicles. The full text of this article is available online at http://circres.ahajournals.org.
منابع مشابه
Immunocytochemical finding of the amidating enzymes in mouse pancreatic A-, B-, and D-cells: a comparison with human and rat.
alpha-Amidation is catalyzed by two enzymatic activities, peptidyl-glycine alpha-hydroxylating mono-oxygenase (PHM) and peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL), denoted collectively as peptidyl-glycine alpha-amidating mono-oxygenase (PAM), which also may include transmembrane and cytoplasmic domains. PAM is present in mammalian pancreas, where it appears to be abundant in the ...
متن کاملAcid prohormone sequence determines size, shape, and docking of secretory vesicles in atrial myocytes.
How vesicles are born in the trans-Golgi network and reach their docking sites at the plasma membrane is still largely unknown and is investigated in the present study on live, primary cultured atrial cardiomyocytes. Secretory vesicles (n=422) are visualized by expressing fusion proteins of proatrial natriuretic peptide (proANP) and green fluorescent protein. Myocytes expressing fusion proteins...
متن کاملA molluscan peptide alpha-amidating enzyme precursor that generates five distinct enzymes.
Mechanisms underlying the specificity and efficiency of enzymes, which modify peptide messengers, especially with the variable requirements of synthesis in the neuronal secretory pathway, are poorly understood. Here, we examine the process of peptide alpha-amidation in individually identifiable Lymnaea neurons that synthesize multiple proproteins, yielding complex mixtures of structurally diver...
متن کاملIn vivo inhibition of peptidylglycine-alpha-hydroxylating monooxygenase by 4-phenyl-3-butenoic acid.
Peptidylglycine-alpha-hydroxylating monooxygenase (PHM; EC 1.14.17. 3) catalyzes the first and rate-limiting reaction in the two-step process that alpha-amidates neural and endocrine peptides. The substrate analog 4-phenyl-3-butenoic acid (PBA) was shown in vitro to selectively inhibit PHM without affecting the activity of peptidyl-alpha-hydroxyglycine alpha-amidating lyase, the enzyme that med...
متن کاملCharacterization of the peptidylglycine α-amidating monooxygenase (PAM) from the venom ducts of neogastropods, Conus bullatus and Conus geographus.
Cone snails, genus Conus, are predatory marine snails that use venom to capture their prey. This venom contains a diverse array of peptide toxins, known as conotoxins, which undergo a diverse set of posttranslational modifications. Amidating enzymes modify peptides and proteins containing a C-terminal glycine residue, resulting in loss of the glycine residue and amidation of the preceding resid...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 95 12 شماره
صفحات -
تاریخ انتشار 2004